Fast Cauchy-like and Singular Toeplitz-like Matrix Computations
نویسندگان
چکیده
computes the solution ~ x = T ?1 ~ b to a nonsingular Toeplitz or Toeplitz-like linear system T~ x = ~ b, a short displacement generator for the inverse T ?1 of T, and det T. We extend this algorithm to the similar computations with nn Cauchy (generalized Hilbert) and Cauchy-like matrices. Recursive triangular factorization of such a matrix can be computed by our algorithm at the cost of executing O(nr 2 log 3 n) arithmetic operations, where r is the scaling rank of the input Cauchy-like matrix C (r = 1 if C is a Cauchy matrix). Consequently, the same cost bound applies to the computation of the determinant of C, a short scaling generator of C ?1 , and the solution to a nonsingular linear system of n equations with such a matrix C. Our algorithm does not use the reduction to Toeplitz-like computations. We avoid singularity in this algorithm and run it in an arbitrary eld by using randomization. We also ameliorate slightly Kaltofen's solver of Toeplitz-like singular linear systems in an arbitrary eld.
منابع مشابه
TR-2013010: Transformations of Matrix Structures Work Again II
Matrices with the structures of Toeplitz, Hankel, Vandermonde and Cauchy types are omnipresent in modern computations in Sciences, Engineering and Signal and Image Processing. The four matrix classes have distinct features, but in [P90] we showed that Vandermonde and Hankel multipliers transform all these structures into each other and proposed to employ this property in order to extend any suc...
متن کاملTransformations of Matrix Structures Work Again II ∗
Matrices with the structures of Toeplitz, Hankel, Vandermonde and Cauchy types are omnipresent in modern computations in Sciences, Engineering and Signal and Image Processing. The four matrix classes have distinct features, but in [P90] we showed that Vandermonde and Hankel multipliers transform all these structures into each other and proposed to employ this property in order to extend any suc...
متن کاملTR-2014005: Fast Approximation Algorithms for Computations with Cauchy Matrices and Extensions
The papers [MRT05], [CGS07], [XXG12], and [XXCB14] combine the techniques of the Fast Multipole Method of [GR87], [CGR98] with the transformations of matrix structures, traced back to [P90]. The resulting numerically stable algorithms approximate the solutions of Toeplitz, Hankel, Toeplitz-like, and Hankel-like linear systems of equations in nearly linear arithmetic time, versus the classical c...
متن کاملNew Fast Algorithms for Structured Linear Least Squares Problems
We present new fast algorithms for solving the Toeplitz and the Toeplitz-plus-Hankel least squares problems. These algorithms are based on a new fast algorithm for solving the Cauchy-like least squares problem. We perform an error analysis and provide conditions under which these algorithms are numerically stable. We also develop implementation techniques that signiicantly reduce the execution ...
متن کاملPivoted Cauchy-Like Preconditioners for Regularized Solution of Ill-Posed Problems
Many ill-posed problems are solved using a discretization that results in a least squares problem or a linear system involving a Toeplitz matrix. The exact solution to such problems is often hopelessly contaminated by noise, since the discretized problem is quite ill conditioned, and noise components in the approximate null-space dominate the solution vector. Therefore we seek an approximate so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999